

3

Our goal

To characterise the behaviour of a system that allows us to predict the output of the system to any input signal

Our motto

We don't care how a system changes a signal, we only care for what the system does to the signal.

We don't study the system itself but we compare the input to the output.

LTI systems are...

- ... linear
 - Homogeneity
 - The amplitude of output signals grows proportionally with the amplitude of input signals, with no change in the *shape* of the output
 - Additivity
 - The output to the sum of two input signals is the sum of the outputs to the two inputs separately
 - Signals don't interact
- ... time-invariant
 - What a system does to an input signal today, is the same as what it will do tomorrow
 - The system does not change its behaviour over time

An LTI system can be completely characterised by its response to sinusoids

5

7

NEVER forget:

Sinusoidal input signals to an LTI system always lead to sinusoidal outputs of the **same frequency**

Knowing the response of a system to a sinusoid of a particular frequency, amplitude and phase allows the prediction of the output of the system to a sinusoid of the same frequency, but any amplitude and any phase

Knowing the response of a system to any frequency sinusoid allows the prediction of the output of the system to any signal that can be made from adding up sinusoids of *any* frequency, amplitude and phase

Why?

8

6

Remember:

Any complex wave can be made by adding up sinusoids of varying frequency, amplitude and phase

The BIG idea: Illustrated

Physical systems react differently to different frequencies

- A swing or pendulum
- Acoustic resonators
- Mass on a spring
- Bridges

9

thebridge_open_high.wmv

Frequency response

- Also known as a *transfer function*
- Sinusoids vary on 3 parameters – frequency, amplitude & phase
- For a system, we need to specify its effect on two of those
 - amplitude response
 - phase response
- Amplitude response typically more important ...
 - but phase matters in certain situations

Characterisation of LTI-Systems

$Input signal \longrightarrow SYSTEM \longrightarrow Output signal$ transfer function frequency response of the frequency of the fre

Using sinusoids to measure an amplitude response in an LTI system

- Typically, choose a constant level for input (not necessary)
- For each frequency feed the input sinusoid to the system and measure level at output
- Calculate the *response*
 - *R* = output amplitude/input amplitude
 - Also known as gain
- Need enough frequencies to map out amplitude response over frequency range of interest
- Then, for any particular frequency
 - output amplitude = response x input amplitude
 - Why?

At least 3 ways to specify a frequency response

Frequency

frequency	input (V)	output (V)	amplitude ratio	gain in dB
(Hz)			(re 2V input)	
250	2	2	1	0.0
500	2	1.98	0.99	-0.1
1000	2	1.42	0.71	-3.0
1500	2	0.56	0.28	-11.1
2000	2	0.24	0.12	-18.4
3000	2	0.08	0.04	-28.0

Frequency

Frequency

But easiest to see the overall effect on a graph, e.g. a lowpass response

Characterisation of LTI-Systems

Amplitude Response: Key points

- Change made by system to amplitude of a sinewave specified over a range of frequencies.
- Response = output amplitude/input amplitude
- Usually scaled in dB as:
 20 x log(output amplitude/input amplitude)
 = response (dB re input amplitude)

17

19

Filters

- Common name for systems that change amplitude and/or phase of waves
 - or just any LTI system
- Simple filters low-pass and highpass

18

An ideal low-pass filter

Sudden change from gain of 1 to a very small value (virtually no output at all) at cut-off frequency f_c

A realistic low-pass filter

- Defined as frequency where gain is -3dB.
- -3 dB is equivalent to half-power not half-amplitude 10 log(0.5) = -3.0

Filters can vary in shape

21

Slope of filter

- Often constant in dB for a given frequency ratio
 - e.g., –6 dB per octave (doubling of frequency)
- suggests the use of a log frequency scale as well as a log amplitude ratio scale
 - dB in log base 10 (10, 100, 1000, etc.)
 - octave scale is log base 2, as implied in the frequency scale of an audiogram (125, 250, 500, 1000, 2000, etc).

22

Filter slope – in dB/octave

- Degrees of steepness of slope less than18 dB/octave can be called "shallow"
- 48 dB/octave or more can be called "steep"

High-pass filters

Simple filters: Key points

- High-pass or low-pass characteristics
- Defined by
 - cut-off frequency and slope of response
- Have a listen!
 - Almost all natural sounds a mixture of frequencies

25

Systems in cascade

• Each stage acts independently, on the output of the previous stage

26

Systems in cascade

- On a linear response scale:
 - Overall amplitude response is *product* of component responses (*e.g.*, multiply the amplitude responses)
- On a dB (logarithmic) response scale
 - Overall amplitude response is the *sum* of the component responses (*i.e.*, sum the amplitude responses) ...
 - Because taking logarithms turns multiplication into addition

Describing the width of a band-pass filter

Natural filters

- Pendulum
- A relevant acoustic example:
 - a cylinder or tube closed at one end and open at the other
 - -e.q. the ear canal

The ear canal An acoustic tube closed at one end and open at the other (\approx 23 mm long)

29

- Tubes like the ear canal form a special type of simple filter ... - a resonator - similar to a band-pass filter
- Response not defined by independent high-pass and low-pass cutoff frequencies, but from a single centre frequency (the resonant frequency)
 - Resonant frequency is determined by physical characteristics of the system, often to do with size.
 - Bandwidth measured at 3 dB down points ...
 - determined by the damping in the system _
 - more damping=broader bandwidth

What is damping?

- The loss of energy in a vibrating system, typically due to frictional forces
- A child on a swing: feet up or brushing the floor
- A pendulum with or without a cone over the bob.
- An acoustic resonator (like the ear canal) with or without gauze over its opening

	Remember		
Today's lab: Measuring the frequency response of an acoustic tube	 All we need to know is the response of a system to sinusoids. An LTI system does not change the shape or frequency of a sinusoid. So it can only change phase or amplitude. Amplitude changes are usually more important, so we focus on those. We need to measure a so-called <i>amplitude response</i>. How a system changes the amplitude of sinusoids frequency response/transfer function/amplitude response 		
33	34		
Using sinusoids to measure an amplitude response in an LTI system	Scaling the response		
 Typically, choose a constant level for input (not necessary) For each frequency - feed the input sinusoid to the system and measure level at output Calculate the <i>response = output/input</i> - Also known as <i>gain</i> Need enough frequencies to map out amplitude response over frequency range of interest 	 Generally use a logarithmic scale for response (dB) rather than linear Amplitude ratio expressed in dB = 20 x log(output amp/input amp) Note similarity to dB SPL - 20 log (? Pa/20 x 10⁻⁶ Pa) Expresses output level in dB re input level 		

Frequency	input (V)	output (V)	amplitude ratio	gain in dB
(Hz)			(re 2V input)	
250	2	2	1	0.0
500	2	1.98	0.99	-0.1
1000	2	1.42	0.71	-3.0
1500	2	0.56	0.28	-11.1
2000	2	0.24	0.12	-18.4
3000	2	0.08	0.04	-28.0

